Tag Archives: MIT

Milano e Torino

I just got back from a 10-day trip to northern Italy, a combination of work and play. The work part was for a research workshop with Eni, a gigantic company you’ve probably never heard of unless you have a thing for 6-legged dogs.

Eni and its six-legged dog.

The 6 legs represent the 4 wheels of a car and the 2 legs of its driver.

As a token of goodwill and everlasting funding (haha NOT), Eni shipped us a human-sized stuffed dog-dragon-thing.

As a token of goodwill and everlasting research funding (haha NOT), Eni shipped us a human-sized stuffed dog-dragon-thing. It has many uses, including taking up office space and scaring undergrads.

Eni is the Italian national oil and gas company, known by some as “the state within the state” for its outsized influence in Italian politics. The company is trying to reinvent itself as an “energy company,” drilling for crude oil in North Africa with one hand while funding solar research internally and at MIT with the other.

It’s a tough balancing act. Oil supermajors (Exhibit 1: Exxon) aren’t particularly well known for believing in human-caused climate change, much less supporting a wholesale shift away from their hydrocarbon lifeblood***. It’s not clear to me whether their support of renewable energy research is merely a good PR move or reflects a genuine desire to save us all (OR perhaps just a hedge in case the world actually decides to do something about climate change). The real answer is probably (d) all of the above.

***Although it’s noteworthy (but not altogether surprising) that a few small oil companies—BP, Shell, Eni, Total, and Statoil—recently urged the U.N. to place a price on carbon.

In any case, Eni seems to be taking one small step in the right direction. During our visit to Eni’s headquarters in San Donato (just south of Milan), CTO Roberto Casula at least used all the right words in talking about climate change: that we need to start the low-carbon transition today, that an investment in renewables is an investment in the future, that Eni needs to become not just an oil company but an energy company, etc. And Eni has its own team of 20 researchers working on solar cells. They do great work on polymer PV, but I can’t help but laugh/cry when an “energy” company with 85,000 employees dedicates just 0.02% of its workforce to developing a key part of the future energy system. Maybe I’m too sentimental.

After the workshop in San Donato, I did some solo traveling, visiting the World Expo in Milan and posing as an Italian in Turin (~1.5 hours west of Milan by train) with Francesca, an MIT friend and colleague who grew up there and was kind enough to show me around her hometown and introduce me to sambuca.

Here are a few highlights from the trip:

With MIT colleagues in San Donato.

With MIT colleagues in San Donato

Duomo di Milano. Right at the center of Milan, the Duomo is the largest cathedral in Italy and far too ornate to comprehend.

Duomo di Milano. Right at the center of Milan, the Duomo is the largest cathedral in Italy and far too ornate to comprehend.

At the Duomo with Vladimir and Pat Doyle.  (Selfie photo credit: Vladimir Bulović)

At the Duomo with Vladimir and Pat Doyle. (Selfie photo credit: Vladimir Bulović)

Papa Francesco visited Torino while I was there. Unfortunately I missed his call...

Papa Francesco visited Torino while I was there. Unfortunately I missed his call…

Running at the Politecnico di Torino, Italy’s oldest technical university.

Oddly enough, Turin is the home of one of the biggest collections of Egyptian artifacts in the world. Here's the Gallery of the Kings at the Egizio Museo di Torino.

Oddly enough, Turin is the home of one of the biggest collections of Egyptian artifacts in the world. Here’s the Gallery of the Kings at the Egizio Museo di Torino.

Focaccia at Perino Vesco. Don't miss this bakery in Torino.

Focaccia at Perino Vesco. Don’t miss this bakery in Torino.

Taking a ride in the Turin Eye, the world's largest tethered hot-air balloon.

Taking a ride in the Turin Eye, the world’s largest tethered hot-air balloon.

TIL 1 kilogram of apricots = ~25 apricots. Clearly I didn't know what a kilogram was. I wanted a snack; I got a stomachache.

TIL 1 kilogram of apricots = ~25 apricots. Clearly I didn’t know what a kilogram was. I wanted a snack; I got a stomachache.

Sardinian cuisine with Francesca and friends, captured in full Polaroid glory.

Sardinian cuisine with Francesca and friends, captured in full Polaroid glory.

Politecnico di Milano, the largest technical university in Italy and sworn enemy of its Torino counterpart.

Politecnico di Milano, the largest technical university in Italy and sworn enemy of its Torino counterpart.

Navigli: Ancient canals and home of Milanese nightlife.

Navigli: Ancient canals and home of Milanese nightlife.

The Brera Gallery is a very cool art museum in the heart of Milan.

The Brera Gallery is a very cool art museum in the heart of Milan.

The Kiss (Hayez 1859)

The Kiss (Hayez 1859). So Italian.

Kicking it at the World Expo. The theme was "Feeding the Planet, Energy for Life", aka FOOD!

Kicking it at the World Expo. The theme was “Feeding the Planet, Energy for Life”, aka FOOD!

Main street of the Expo.

Main street of the Expo.

Food.

Food.

20,000 LEDs form a room-sized floor display in the China pavilion.

20,000 LEDs form a room-sized floor display in the China pavilion.

With Francesca at the China pavilion.

With Francesca at the China pavilion.

Nutella restaurant? Count me in.

Nutella restaurant? Count me in.

Vertical farm at the Israel pavilion.

Vertical farm at the Israel pavilion.

Aquaponics = Aquaculture (raising fish in tanks) + Hydroponics (growing plants in water). The fish poop, bacteria break down the poop into nitrates, and the plants use the nitrates as fertilizer. Unfortunately you still have to feed the fish.

Aquaponics = Aquaculture (raising fish in tanks) + Hydroponics (growing plants in water). The fish poop, bacteria break down the poop into nitrates, and the plants use the nitrates as fertilizer. Unfortunately you still have to feed the fish.

What is this thing, and why is it here?

What is this thing, and why is it here?

The UK beehive pavilion. The pavilion is connected to an actual beehive in Nottingham: In the pavilion, speakers and LEDs generate noise to reflect the real-time activity of bees in the actual hive.

The UK beehive pavilion. The pavilion is connected to an actual beehive in Nottingham: In the pavilion, speakers and LEDs generate noise to reflect the real-time activity of bees in the actual hive.

Good ole USA.

Good ole USA.

Supermarket of the Future: This was very cool. It's an operational supermarket with a bunch of high-tech stuff. Point at food and the screens above show you the nutritional information, price, etc. Robot arms pick up and package fruit. And after you check out, you get to carry your grocery bags around the Expo all day. Yay!

Supermarket of the Future: This was very cool. It’s an operational supermarket with a bunch of high-tech stuff. Point at food and the screens above show you the nutritional information, price, etc. Robot arms pick up and package fruit. And after you check out, you get to carry your grocery bags around the Expo all day. Yay!

Advertisements
Tagged , , , , , ,

MIT hosts unprecedented debate on fossil fuel divestment

MIT hackers transformed Building 18 into a 105-pixel display on the morning of MIT's debate of fossil-fuel divestment

MIT hackers transformed Building 18 into a 105-pixel display on the morning of MIT’s campus-wide debate on fossil-fuel divestment

Last Thursday, MIT hosted a fantastic debate on fossil fuel divestment and other university actions to fight climate change. If you’ve ever wondered why your institution should or should not divest, I highly recommend taking a look. You can watch the full debate online here (1 hour, 35 minutes).

If you don’t have an hour to spare, you can also read more about the event here:

  • Bloomberg: “Harvard Dismisses Climate Change Protesters While MIT Negotiates With Them”
  • MIT News: “MIT hosts debate on pros and cons of fossil-fuel divestment”
  • Scientific American: “M.I.T. Debates Whether to Drop Fossil-Fuel Investments”

Debaters

For fossil fuel divestment:
Naomi Oreskes, Professor of History of Science at Harvard University
Don Gould, Trustee Pitzer College & CIO Gould Asset Management
John Sterman, Professor, MIT Sloan School of Management

Against fossil fuel divestment:
Brad Hager, Professor, Director of the MIT Earth Resources Laboratory
Frank Wolak, Professor of Economics, Stanford University
Timothy Smith, Director of ESG Engagement, Walden Asset Management

Six prominent climate-change figures debate fossil-fuel divestment at MIT

Six prominent climate-change figures debate fossil-fuel divestment at MIT

Tagged , , ,

Meet the MITEI External Advisory Board

With my advisor Vladimir and former U.S. Secretary of State/Treasury/Everything George Shultz

With my advisor Vladimir and former U.S. Secretary of State/Treasury/everything George Shultz

I gave a talk last week that made me a bit nervous.

The audience? The External Advisory Board of the MIT Energy Initiative (MITEI). The EAB deeply influences MIT’s energy research direction and represents a large fraction of research funding on campus. It also happens to have on it some of the more distinguished people and fancy titles in the world of energy and climate, including former members of Congress, ex-Secretaries of State/Energy/etc., heads of national organizations, VCs, oil and gas executives, and a couple Nobel laureates for good measure.

Yep. I was a bit nervous.

This was an unusual opportunity. I was invited to give a 15-minute talk on solar photovoltaic technology as a member of the MIT Future of Solar Energy Study panel. The Solar Study is the latest of a series of MITEI-sponsored “Future of ____” reports meant to inform the public and guide policymakers in D.C. on the current status and future trajectory of leading energy technologies. The report won’t be ready until the end of the year (fingers crossed), but naturally the EAB wanted to hear all the juicy details firsthand.

Given the audience, I was expecting to be regularly interrupted and thoroughly questioned, especially by our friends from Shell and Saudi Aramco. I was mistaken. My talk went smoothly, no one interrupted, only a couple people fell asleep, and several questions during the panel sparked interesting conversations. No sweat.

That evening, the EAB and all of the speakers ended up at President Reif’s house for dinner. A few highlights: (1) Kerry Emanuel gave a talk about the science of climate change. (2) My advisor Vladimir introduced me to George Shultz, former U.S. Secretary of State (during the Reagan administration) and current Hoover Institution fellow at Stanford—93 years old and still going strong. (3) Dinner was delicious.

What a day.

***After the panel, I was chatting with one of the board members, Frances Beinecke (NRDC president), and found out that she marched in the People’s Climate March! Awesome.

Tagged , , , ,

The People’s Climate March

climate march

“Look at all these people here because they care about your future.”
– Parent to child while observing the People’s Climate March, overheard by Geoffrey Supran

This past Sunday, together with 70 others from MIT, the Incredible Hulk, and 400,000 more from across the U.S. and around the world, I marched for climate change in New York City.

I marched because if our generation doesn’t deal with climate change, the next generation may not be able to.
I marched because I believe a price on carbon is the most efficient road to a livable future climate.
I marched because the world leaders convening in New York on Tuesday needed to see us march.
I marched because those who have the privilege to know have the duty to act.
I marched because otherwise my children would someday ask why I didn’t.
I marched because I stand with science.
I marched because there is still hope.
I marched.

I marched because it was the People’s Climate March—the biggest climate-change demonstration in history, a statement of the people, by the people, for the people.

I had no idea what to expect. I’ve never been an activist before. All I knew when I boarded a bus from the Alewife T station outside Boston on Saturday morning was that 500 buses carrying 25,000 people from all over the country would converge on New York City in the next 24 hours. Aside from 8 MIT students and staff, my bus, hosted by 350MA, was filled with mostly older folks from Cambridge, Somerville, Lexington, Concord, and a few other sleepy suburbs of Boston. Maybe it would be a quiet weekend.

At 10AM on Sunday morning, we assembled just west of Central Park between 59th and 86th St. for the start of the march. The MIT contingent crowded into the student section at 69th St. and Central Park West. More and more people trickled in. By 11AM, hundreds of thousands of people overflowed the 30-block-long assembly area—so many that after the march started at 11:30AM, those near the back didn’t start moving until 2 hours later. It was hot, sticky, overcast, altogether unpleasant. But no one complained. The day was about climate, not weather. A moment of silence at 12:58PM honored those already affected by climate change; a tidal wave of noise two minutes later sounded the alarm to the world. So the march began.

For context, I’ve been working with Fossil Free MIT (FFMIT) for over a year now, pushing MIT to take strong action on climate change, in particular by divesting its $12.4B endowment from companies with major reserves of coal, oil, and natural gas. FFMIT is part of a growing international divestment movement among individuals, companies, and institutions both public and private. It just makes sense. When you study the global impacts of climate change, when you look at the urgency of near-term action and the looming carbon bubble, when you find out that political donations are blocking climate legislation, when you ask the mirror, “What can I do about climate change?”, divestment is the logical answer. Fossil-fuel divestment is all about leveraging institutional clout to achieve a better future. I can’t think of a stronger action that students can take today.

On Sunday, I marched with 50,000 students from MIT, Stanford, Harvard, BU, BC, Berkeley, Tufts, Yale, Duke, UNC, Tulane, and hundred of other schools; with Al Gore and Leonardo DiCaprio and the U.N. Secretary-General Ban-Ki Moon; with men and women and children from every state and every socioeconomic status. All day the chants echoed through the streets of New York:

“What do we want? Climate justice!
When do we want it? NOW!”

“Show me what democracy looks like.
THIS is what democracy looks like!”

“Hey hey—ho ho—fossil fuels have got to go!”

For 4 hours we marched, south and east around Central Park, past Trump Tower and the Bank of America Tower and the Fox News building, through Times Square and all the way to 11th Ave. We marched with banners, signs, posters, body paint. Scientists marched with a giant chalkboard showing rising CO2 levels and rising global temperatures. Students marched with a 30-foot inflatable globe. Parents marched with kids in Lorax costumes. Rappers and musicians marched with boom-boxes, with megaphones, with loud voices and louder conviction. All marched with pride.

But climate change wasn’t the only issue at hand. The marchers represented causes ranging from climate change to clean water, social justice to global health, labor unions to indigenous communities, veganism to socialism. The message to the U.N. and to world leaders would have been stronger had everyone been asking for the same thing. My vote would be for a price on carbon, widely accepted as the most economically efficient solution to climate change. But seeing so many communities come together on one street, if not one issue, was truly an inspiration: Every advocate for every cause knew that unchecked climate change would weaken their own cause, deepen economic prejudice and injustice, and ultimately create more problems for more people. Each one knew the terrible and beautiful truth, that “to change everything, we need everyone.”

I was in a meeting a few months ago when the discussion turned to climate change, and someone made a keen observation: If we don’t solve cancer or education or just about any other problem in the world, nothing will change. Life as we know it will go on. But if we don’t solve climate change, things will change. Life as we know it will not go on. This is a fact. The most conservative thing any of us can do today is to move boldly against climate change, just like 400,000 people did last Sunday at the first-ever People’s Climate March.

A few shout-outs to…
Anastasia for being a gracious host last weekend
Patrick for a heroic organizing effort
Jenn and Alison, my banner buddies
Ploy for her climate artistry and for being featured all over the national news
Geoffrey for being appointed to the MIT Climate Change Conversation Committee
All my fellow MIT marchers who made the PCM so damn inspiring

2014-09-21 23.06.48
Tagged , , ,

Googling grad students

I googled “grad student” along with a number of different search terms. Here are the results, scientifically speaking:

Google grad student

The lesson here isn’t that you shouldn’t go to grad school… Just make sure you always use a log scale.

Edit (20130903): This plot was featured on PhD Comics! http://www.phdcomics.com/comics.php?f=1626.

Tagged , , , , , ,

200 miles in pictures: Reach the Beach 2013

A couple weeks ago, I ran the Reach the Beach Relay, a 200-mile footrace across Massachusetts. I’d never met anyone on my team before 9AM that Friday morning, when we gathered across from the Stata Center on Vassar St. at MIT to pile into two Dodge Grand Caravans and make our way into the wilderness beyond Greater Boston. A trunk already packed high with Nutri-Grain bars, fruit snacks, and Gatorade was further burdened by my duffel bag packed with running shoes and bananas.

I was enlisted for this drama by my labmate Christina, who knew a team of MIT chemists (“12 Angry Scientists”) looking for a happy engineer to fill out their roster. I had no idea what I was getting into, but signed up on a whim months ago, then promptly forgot about it in favor of working on my masters thesis. The morning of the race, I turned in my completed SM thesis to the EECS department and clambered into Van 2 carefree.

What it takes to feed 12 scientists for a day.

What it takes to feed 12 scientists for a day.

Twelve team members all accounted for, we headed to Wachusett Ski Resort in central Massachusetts, where we were subjected to a team picture and a quick orientation (“Wear reflective gear at night. Don’t stop in the middle of the road. Recycle. Drink beer—but not too much. Please do not answer ‘nature’s call’ on private or town property.”). The race would be broken into 36 legs of up to 9 miles each—3 legs per person—with a slap bracelet serving as a progressively sweatier relay baton to be passed (slapped?) from runner to runner at the transition areas. Each 6-person van would roll through their full lineup—around 4 hours of running—before handing off the baton to the next van, then rinse and repeat. We would run through the night, through forest and farmland, along highways and dirt roads, until we smelled seawater at the Atlantic coast.
Ski resort in winter, relay race start in summer.

Wachusett Mountain: Ski resort in winter, relay race start in summer.

Slap bracelet baton.

Slap bracelet baton.

Van 2 reporting for duty.

Van 2 reporting for duty.

Faster teams are assigned a later start time so that all the teams end at around the same time, making for a more dramatic finish. It turns out angry scientists = fast runners: we were one of the last teams to get going, 5 hours after the first team started their voyage. At 1PM, our lead-off runner Dan lined up at the start line at the base of Mt. Wachusett. The chair lifts are there for a reason—that reason apparently does not apply to runners. Dan’s 2.8-mile leg was a black diamond trail run in reverse, with 1.7 miles up the mountainside and abundant cursing. But back in Van 2, we had 4 hours to kill before our first leg—we cheered on our Van 1 teammates during their runs by blasting high-quality music like Call Me Maybe and Taylor Swift with the windows down, then stopped for a lunch of turkey sandwiches at a roadside convenience store in the middle of nowhere.
RTB starting line.

RTB starting line.

By 5PM, we were getting antsy in Van 2. After getting all pumped up to start the race, repressing the adrenaline for hours took more self-control than I could muster. So I gave up and took a nap:
Pre-run nap at Assumption College in Worcester.

Pre-run nap at Assumption College in Worcester.

8th in the Angry Scientist rotation, I woke up to grab the baton from #7 Jen and run my first leg, 7.53 miles from Worcester to Boylston. I knew I went out way too fast but couldn’t help it—it was one of the first hot days of the year, I’d been sitting in front of a computer writing a thesis for the past month, and a mile in I was panting like an overexcited puppy. Smooth. Luckily there was no one around to see me self-destruct—my teammates helped with some drive-by dance music—and after 52 minutes of contemplative misery, I rolled into transition area 9 under my own power.

Apparently my preparation was lacking; I’ve run a few marathons (26.2 miles) and half-marathons (13.1) over the years, so I was ready for a calm 7.5- or 8-minute-per-mile pace. Although my total distance here (~22 miles) was similar to a marathon, it was split up into three frantic 6-8 mile races, so I felt compelled to run hard from the get-go rather than pacing comfortably and running to finish. Getting used to the pace was the second-hardest part of this race. The hardest was timing: When to eat, when to drink, when to sleep, when to stretch, when to get warmed up, and—most importantly—when to take a seat on a nearby toilet. No joke. Coordinating alimentary intake and inevitable emission over 24 hours of running is an engineering task far beyond my abilities. Our team captain Kit solved the problem in finest MIT fashion: He simply contracted food poisoning, so that everything he ate came right back up—no need to digest. Brilliant.

Slapping on the baton for my first leg.

Slapping on the baton for my first leg.

A botched hand-off. Sorry Andrew!

A botched hand-off. Sorry Andrew!

#9 Andrew booking it down the home stretch.

#9 Andrew booking it down the home stretch.

Van 2: Jen, Kurt, Stephen, and Yifeng, relaxed and ready.

Van 2: Jen, Kurt, Stephen, and Yifeng, relaxed and ready.

The rest of the race passed by in a blur of sleepless zombie running, insane cheering, dance music, and sweat. We ran over the proverbial river and through the woods and all through the night—creeping up in our van and whispering soft nothings at our runners instead of shouting encouragement—with a brief recess at a local hotel.
Stopping for a late-night dinner of spaghetti and meatballs.

Stopping for a late-night dinner of spaghetti and meatballs.

And... back to running, nighttime edition.

And… back to running, nighttime edition.

The next morning, we finally saw a proper hand-off, 160 miles in.

The next morning, 160 miles in, we finally saw a proper hand-off.

Why is Santa Claus here? Not impressed.

Why is Santa Claus here? Not impressed.

The brothers Horning, celebrating something.

The brothers Horning, celebrating their awesome color coordination.

Thanks to our late start and relative speediness, we passed progressively more competing teams as the race dragged on (I passed ~20 people in 3 legs, and was passed once myself, by an old guy who left me in the dust with his relentless uphill pace). Of particular intrigue was a team named GURL Boston All-Stars, composed of all guys. They were a mystery, and they were fast. At the last transition area, after 192 miles and 24 hours of running, the anchor for GURL Boston stepped into the hand-off zone wearing a short leopard print dress and carrying a clutch purse. Turns out GURL = Gay Urban Running League. As we passed their anchor—the guy had to be running sub-6:30 pace—our van started blasting It’s Raining Men (complete coincidence, of course) with the windows open. He pranced and blew kisses and mimed his thanks, hands to his heart, still running at top speed. What a team.
Damn, GURL.

Damn, GURL.

Our van pulled into Horseneck Beach in southern Massachusetts around 1:30PM on Saturday, with our intrepid driver and final runner Yifeng in hot pursuit. 12 Angry Scientists joined in for the last 100 meters of the race, crossing the finish line after more than 25 hours in transit. We were met with medals and Boloco burritos, and drove back to Boston in delirium.

Reach the Beach 2013 exceeded all my expectations for a relay race. Running for and with a team is infinitely more fun than running alone: you can cover a lot more distance, you get to travel with a built-in fan base, and there’s always someone around to feed you. This particular race was an incredible opportunity to get out of Boston and explore the New England countryside in all its glory: I’ve now used Porta-Potties all across Massachusetts. Who’s in for next year?

The beach, reached.

The beach, reached.

The whole team at the finish: Scientists do it better.

The whole team at the finish: Scientists do it better.

RTB 2013 by the numbers:
  • PB&J sandwiches consumed: 4
  • Nutri-Grain bars consumed: 5
  • Bottles of water emptied: 11
  • Changes of clothes: 4
  • Number of Porta-Potties visited: 9
  • Hours of sleep: 2.5
  • Number of Taylor Swift songs: Too many to count
  • Total distance covered: 200 miles (22.47 for me)
  • Total time: 25:07:39 (2:39:12)
  • Average mile pace: 7:33 (7:05)
  • Ranking: 11th of 147 overall, 4th of 15 in Mens Open division

The photos in this post were taken by me, Andrew, Jen, and Monica. Thanks!

Tagged , , , , ,

Energy-critical elements: Why you should care about chemistry

Image

I went to a talk earlier this week by Robert Jaffe, an MIT physics professor. Jaffe does research on particle physics and quantum field theory, but this talk was on energy-critical elements (ECEs)—chemical elements that (a) are critical for one or more new energy-related technologies and (b) don’t currently have established markets and hence might not be available in large quantities in the future.

For renewable energy technologies, materials availability is particularly crucial because renewable resources tend to be diffuse. Consider solar energy: In a typically-sunny place like the Bay Area, light from the sun reaches the Earth with an average power density of ~200W per square meter. With a record-efficiency 1-square-meter solar panel (and high-efficiency storage), you might be able to power one incandescent light bulb around the clock. Not exactly awe-inspiring. (I recommend LED lighting anyway.) The amount of power we can get from a renewable resource is proportional to the area we can cover with solar panels or wind turbines or tidal energy harvesters, which in turn is proportional to the amount of material we need. To scale up renewable generation is to scale up production of the materials used in renewable generation technology—hence the importance of energy-critical elements.

Here are a few examples of current energy-critical elements and why we care about them:

(1) Tellurium (Te) – Used in advanced solar photovoltaics
    • Tellurium constitutes ~0.0000001% (one part per billion) of the Earth’s crust—it’s rarer than both gold and platinum.
    • Cadmium telluride (CdTe) currently dominates the thin-film solar cell industry (see First Solar). Suppose that this year we want to produce enough CdTe solar cells to generate 1 gigawatt-peak (GWp) of electricity—enough to power on the order of 500,000 homes (less than 1% of the US). We’ll need ~80 tons of tellurium, around 20% of global tellurium production. To get even 50GWp from CdTe solar cells, we need to increase tellurium production by an order of magnitude. As a point of reference, the world consumes around 2 TW of electrical power (average).
    • Conclusion: Tellurium-based solar cells alone won’t solve the energy problem.

(2) Neodymium (Nd) and praseodymium (Pr) – Used in wind turbines

    • These rare-earth elements (REEs) are powerful permanent magnets used in wind turbines. Offshore wind turbines—which are often difficult to repair, for obvious reasons—benefit most from the use of reliable permanent magnets rather than more-complex induction-driven electromagnets.

(3) Terbium (Tb) and europium (Eu) – Used for lighting and displays

    • These rare-earth metals form oxides that serve as red (Eu2O3) and green (Tb2O3) light-emitting phosphors. Such phosphors are used in color TV displays to form subpixels and in standard white lights (e.g., CFLs) to approximate the warm color of incandescent bulbs.
    • The price of Tb and Eu has fluctuated in recent years due to China’s restrictions on exports of rare-earth elements.

(4) Rhenium (Re) – Used in advanced high-performance gas turbines

    • 70% of the world’s rhenium production is used in jet engines (alloyed with nickel) to reduce mechanical deformation under high thermal and structural stresses.

(5) Helium (He) – Used in cryogenics and many research applications

    • Helium is pretty cool: It liquifies at a lower temperature than any other element and doesn’t solidify at any temperature. It’s also the least chemically active element and the only element that can’t be made radioactive when exposed to radiation.
    • Helium is used mostly for energy research, cryogenics—including for MRI scanners—and as a purge gas to flush out liquid hydrogen and liquid oxygen fuel tanks for rockets, since it doesn’t solidify even at ridiculously low temperatures.
    • But we’re running low: Helium is a byproduct of natural gas production, but since it’s lighter than air, it tends to float off into space once it’s released. And we can’t realistically recover helium from the atmosphere, where it resides at concentrations of ~5ppm.
    • We need to efficiently collect the helium released as we extract natural gas; otherwise we’ll quickly run out of a critical element with no known substitutes (at least until nuclear fusion becomes feasible, i.e., perpetually 50 years from now).

(6) Indium (In) – Used as a transparent conductor in touchscreens, TV displays, and modern thin-film solar cells

(7) Lithium (Li) and lanthanum (La) – Used in high-performance batteries

(8) Platinum (Pt), palladium (Pd), and other platinum group elements – Used as catalysts in fuel cells for transportation

Keep in mind that the “energy-critical” label doesn’t reflect any fundamental difference in the nature of elements within and without this classification, and the subset of elements designated as ECEs will change as energy technologies and our knowledge of materials availability evolve.

Side note: Many “rare-earth elements” are energy-critical elements as well, but are actually more common in the Earth’s crust than most of the above elements; REEs are “rare” simply because they don’t exist as free elements or in concentrated ores that are easily accessible.

Side note 2: Some unlisted elements (e.g., Cu, Al, Si) are also critical to energy technologies, but they have developed markets, exist around the world—i.e., geopolitical issues have less impact on their supply—and are used in many other applications, such that substitutes could be found for those applications and additional supply made available for energy applications if necessary.

Energy-critical elements might not be available because they just aren’t very abundant in the Earth’s crust—the only part of our planet we can reach right now. The crust is mostly made of oxygen, silicon, and aluminum; all other elements exist in very low concentrations and are often hard to isolate and extract. That said, the absolute availability of elemental resources probably shouldn’t be our primary concern. A more insidious barrier to the development of new energy technologies is short-term disruption in the supply of ECEs. Supply volatility causes prices to fluctuate, which in turn disrupts long-term extraction efforts and hinders large-scale deployment of technologies that depend on ECEs.

What constraints could disrupt ECE supply?

One primary peril is geopolitics. When ECE production is concentrated in only a few places in the world, international politics and trade restrictions may dictate the market, which is bad. Take platinum: The vast majority of global reserves of platinum-group metals are concentrated in the Bushveld Complex of South Africa. Technical, social, and political instabilities in South Africa could thus disrupt the availability of platinum, palladium, and other critical elements. Another example is China’s 2010 decision to restrict exports of rare-earth elements, a market in which China enjoys a near-monopoly thanks to its natural geological advantages. Rare-earth element prices spiked briefly before the market readjusted to the current and future possibility of limited supply.

But despite all the political talk about energy independence, keep in mind that the US currently imports over 90% of the energy-critical elements it consumes, and that’s not a bad thing. Different regions have different comparative advantages in the production of ECEs, and only through trade are efficient markets achieved. Complete ECE independence is simply not possible—e.g., we have no viable source of platinum—and even partial independence is not possible without sacrificing many modern technologies. Consider food markets: Can you imagine life in a food-independent US? We can’t grow nearly enough bananas, mangoes, cashews, coffee, or cacao to satisfy our massive national appetite, nor can we survive without. Why then do we expect full ECE independence?

Another potential risk for disruption lies in the joint production of energy-critical elements—particularly In, Ga, and Te—with conventional ores. Nearly all ECEs are extracted as byproducts of the mining and refining of major metals (e.g., Ni, Fe, Cu) with much higher production volumes and more established markets. The problem then is that the demand for ECEs does not drive production: Their availability is thus constrained by how much of the ECE is contained in the ore of the primary product, and supply is dictated by economic decisions based on the primary product rather than the ECE. This lack of market control renders ECE prices subject to the whims and fancies of major metal markets.

Adding to the uncertainty in ECE availability is the artificially low prices made possible by joint production: Since ECEs piggyback on the mining infrastructure already in place for major metal production, their prices don’t reflect many of the fixed costs of mining and refining. ECE prices will remain artificially low until by-production saturates—i.e., when enough demand exists that byproduct production can’t keep up, making independent mining of the ECE profitable. At that inflection point, however, new energy technologies developed and assessed using current ECE prices may not be able to afford the much-higher true price and will thus fail. One current example is tellurium, which currently costs around $150 per kilogram and exists with ~1ppb abundance in the crust. For comparison, consider platinum, which costs around $150,000 per kilogram despite its ~4ppb crustal abundance. Why is tellurium so cheap? It turns out tellurium is a byproduct of the electrolytic refining of copper, and the large market for copper keeps the supply of the tellurium byproduct sufficient to meet current global demand.

Other risk factors for ECE availability include environmental and social concerns—the refinement of ECEs (e.g., rare-earths) is often a highly destructive process involving unpleasant chemicals, which could make ECE availability subject to environmental policy—and long response times for extraction—it typically takes 5-15 years to bring new mines online, which may be too slow to keep up with the deployment of novel energy technologies.

So what can we do about it?

Large-scale coordination by the government is needed to attack so complex a problem as energy-critical element availability. Providing reliable and up-to-date information on the availability of ECEs to researchers and investors will go a long way toward improving the current situation: With sufficient information, we can shift research efforts toward energy technologies with ECE needs that coincide with ECE availability.

Another potential response is to increase efforts to recycle ECEs. Recycling all ECE-containing products could reduce our dependence on new resources. Consider cell phones: Modern mobile devices contain 40 or more chemical elements—the majority of known radioactive-stable elements—and most end up in the back of desk drawers at the end of each 2-year contract cycle. But recycling isn’t a feasible option when considering any growth in the market size, much less exponential growth. Assuming the same efficiency of use over time—e.g., the same amount of Te will be needed to produce a CdTe solar cell with a fixed power output now and 20 years from now—recycling can never keep up with increasing material demands, even with 100% recycling efficiency.

The take-home message: Many new energy technologies rely heavily on a subset of chemical elements (e.g., He, Li, Te, rare-earths). These “energy-critical elements” (ECEs) are not currently produced in large quantities, and thus their future availability is highly unpredictable and dependent on complex economic, environmental, and geopolitical factors. A shortage of these elements could inhibit the large-scale deployment of promising solutions to the world’s energy needs. We need more people and more money dedicated to identifying potential substitutes, informing researchers and the public about ECE issues, and improving the efficiency with which we extract, use, and reclaim these elements.

Check out the full APS/MRS report if you’re interested in finding out more!

 Image

Me and my LED light bulb.

Me and my LED light bulb.

Tagged , , , , , , , , , ,

12 Burnout Prevention Tips from MIT

The MIT Engineers. How creative.

I ran across these “MIT Burnout Prevention and Recovery Tips” the other day:

1) STOP DENYING. Listen to the wisdom of your body. Begin to freely admit the stresses and pressures which have manifested physically, mentally, or emotionally.
  • MIT VIEW: Work until the physical pain forces you into unconsciousness.

2) AVOID ISOLATION. Don’t do everything alone! Develop or renew intimacies with friends and loved ones. Closeness not only brings new insights, but also is anathema to agitation and depression.

  • MIT VIEW: Shut your office door and lock it from the inside so no one will distract you. They’re just trying to hurt your productivity.

3) CHANGE YOUR CIRCUMSTANCES. If your job, your relationship, a situation, or a person is dragging you under, try to alter your circumstance, or if necessary, leave.

  • MIT VIEW: If you feel something is dragging you down, suppress these thoughts. This is a weakness. Drink more coffee.

4) DIMINISH INTENSITY IN YOUR LIFE. Pinpoint those areas or aspects which summon up the most concentrated intensity and work toward alleviating that pressure.

  • MIT VIEW: Increase intensity. Maximum intensity = maximum productivity. If you find yourself relaxed and with your mind wandering, you are probably having a detrimental effect on the recovery rate.

5) STOP OVERNURTURING. If you routinely take on other people’s problems and responsibilities, learn to gracefully disengage. Try to get some nurturing for yourself.

  • MIT VIEW: Always attempt to do everything. You ARE responsible for it all. Perhaps you haven’t thoroughly read your job description.

6) LEARN TO SAY “NO”. You’ll help diminish intensity by speaking up for yourself. This means refusing additional requests or demands on your time or emotions.

  • MIT VIEW: Never say no to anything. It shows weakness, and lowers the research volume. Never put off until tomorrow what you can do at midnight.

7) BEGIN TO BACK OFF AND DETACH. Learn to delegate, not only at work, but also at home and with friends. In this case, detachment means rescuing yourself for yourself.

  • MIT VIEW: Delegating is a sign of weakness. If you want it done right, do it yourself (see #5).

8) REASSESS YOUR VALUES. Try to sort out the meaningful values from the temporary and fleeting, the essential from the nonessential. You’ll conserve energy and time, and begin to feel more centered.

  • MIT VIEW: Stop thinking about your own problems. This is selfish. If your values change, we will make an announcement at the Corporation meeting. Until then, if someone calls you and questions your priorities, tell them that you are unable to comment on this and give them the number for Community and Government Relations. It will be taken care of.

9) LEARN TO PACE YOURSELF. Try to take life in moderation. You only have so much energy available. Ascertain what is wanted and needed in your life, then begin to balance work with love, pleasure, and relaxation.

  • MIT VIEW: A balanced life is a myth perpetuated by liberal arts schools. Don’t be a fool: the only thing that matters is work and productivity.

10) TAKE CARE OF YOUR BODY. Don’t skip meals, abuse yourself with rigid diets, disregard your need for sleep, or break the doctor appointments. Take care of yourself nutritionally.

  • MIT VIEW: Your body serves your mind, your mind serves the Institute. Push the mind and the body will follow. Drink Mountain Dew.

11) DIMINISH WORRY AND ANXIETY. Try to keep superstitious worrying to a minimum – it changes nothing. You’ll have a better grip on your situation if you spend less time worrying and more time taking care of your real needs.

  • MIT VIEW: If you’re not worrying about work, you must not be very committed to it. We’ll find someone who is.

12) KEEP YOUR SENSE OF HUMOR. Begin to bring job and happy moments into your life. Very few people suffer burnout when they’re having fun.

  • MIT VIEW: So you think your work is funny? We’ll discuss this with your director on Friday, at 7:00PM!

***Also… wow.

Tagged , , , , ,

Letter to Congress

Take a second to sign this letter to Congress in support of continued funding for scientific research. It’s worth it.

-Joel


THE LETTER

To: The United States Congress Joint Select Committee on Deficit Reduction

Dear Member:

America’s science and engineering graduate students need your help. Our country is on the precipice: with US finances in a desperate position, upcoming decisions will determine the shape of our nation for decades to come. We urge you to seek common ground in Congress to preserve the indispensable investments in science and engineering research that will drive our nation’s prosperity for generations. We urge you to avoid any cuts in federally funded research.

We could reiterate that scientific progress and technological innovation have kept the US at the head of the global economy for over half a century. We could remind you that rapid changes in health technology, information security, globalization, communications, artificial intelligence, and advanced materials make scientific and technological progress more critical than ever. We could warn you that our global competitors are ramping up investments in research and development, inspired by our own rise to economic superpower. But all this is well established[1][2][3][4][5][6]. Instead, we’d like to discuss a crucial element of research funding that is often overlooked: human capital.

Over half a million graduate students and postdoctoral associates study science and engineering in the US[7]. These researchers form the bedrock labor force of the world’s best university R&D community. The value of these graduate students is not limited to the experiments they run and the papers they publish. Researchers in science and engineering learn to develop and implement long-term strategies, monitor progress, adapt to unexpected findings, evaluate their work and others’, collaborate across disciplines, acquire new skills, and communicate to a wide audience. Scientists and engineers don’t just get good jobs; they create good jobs, enabling their employers to produce the innovative products and services that drive our economic growth. Every science and engineering graduate represents a high-return investment in human capital, one impossible without federal support.

Federal research funding is essential to graduate education because research is our education. Over 60% of university research is federally funded; private industry, although it dominates the development stage, accounts for only 6% of university research[8]. America must remain competitive in the global economy, and we cannot hope to do that by paying the lowest wages. We will never win a race to the bottom. Instead, we must innovate, and train the next generation of innovators. Innovation drives 60% of US growth[9]. Economists estimate that if our economy grew just half a percent faster than forecast for 20 years, the country would face half the deficit cutting it faces today[10].

Does federal research funding promote innovative technology and groundbreaking scientific progress? Absolutely. It also provides our economy with the most versatile, skilled, motivated, and creative workers in the world. We graduate students understand the severity of the fiscal crisis facing our country. Our sleeves are rolled up; we’re ready to be part of the solution. But we need your help. Congress’s goal in controlling our deficit is to protect America’s future prosperity; healthy federal research funding is essential to that prosperity. In the difficult months ahead, we ask you to look to the future and protect our crucial investments in R&D.

Sincerely,

America’s Science and Engineering Graduate Students

[1] National Academy of Sciences, National Academy of Engineering, and Institute of Medicine: Rising Above the Gathering Storm http://www.nap.edu/catalog.php?record_id=11463

[2] National Academy of Sciences, National Academy of Engineering, and Institute of Medicine: Rising Above the Gathering Storm, Revisited: Rapidly Approaching Category 5 http://www.nap.edu/catalog.php?record_id=12999

[3] National Science Board: Science and Engineering Indicators 2010 http://www.nsf.gov/nsb/sei/

[4] American Association for the Advancement of Science: The US Research and Development Investment http://www.aaas.org/spp/rd/presentations/

[5] National Science Foundation: Science and Engineering Indicators: 2010 http://www.nsf.gov/statistics/seind10/

[6] American Association for the Advancement of Science et al.: Letter to the Joint Select Committee on Deficit Reduction http://www.aau.edu/WorkArea/DownloadAsset.aspx?id=12780

[7] National Science Foundation: Graduate Students and Postdoctorates in Science and Engineering. http://www.nsf.gov/statistics/nsf11311/

[8] National Science Foundation: Science and Engineering Indicators: 2010, page 5-14 http://www.nsf.gov/statistics/seind10/

[9] Robert M. Solow (Prof. of Economics, MIT), Growth Theory, An Exposition (Oxford Univ. Press, New York, Oxford, 2nd edition 2000), pp. ix-xxvi (Nobel Prize Lecture, Dec. 8, 1987)

[10] David Leonhardt, “One Way to Trim the Debt, Cultivate Growth”, NY Times, Nov. 10, 2010 (see also work by economists Alan Auerbach and William Gale)

Tagged , , , , , , , , , , , ,

Quora: Going to grad school in engineering

I was asked to answer a question on Quora about grad school and preparing for a career in photovoltaics and device engineering—presumably because I’m going to grad school and preparing for a career in photovoltaics and device engineering—and I thought the question and answer might be helpful for those considering going to grad school in engineering.


Here’s the question and context:


How do I choose a graduate program and prepare for a career in solid-state device engineering?

I have a B. Sc. in Electrical Engineering and I would like to work with photovoltaics / solid state device physics. My undergraduate degree is not quite enough to let me work in that field outright. So I’m looking to do a graduate degree.

I applied for a 2-year M. Sc. in Physics program and I was assessed for 2 years’ worth of bridging subjects, for a total of 4 years of study. I think that 4 years is quite a long time. The good thing is that I’ve been talking to a professor who does condensed matter physics and photovoltaics and he’s willing to let me join his group.

On the other hand, I have an option to do a 2-year M. Sc. in EE in the field of Microelectronics or Power Electronics. Which one will be a good way to bridge into photovoltaics?

At this university, the Physics department is the more prolific publisher of research output, both locally and internationally. Not that I’m super rich (or else I wouldn’t be asking this question), let’s take the issue of finances out of the equation. Let’s focus on the time investment (I’m 25) and academic learning benefits.

Time-wise, I’m inclined towards EE; but personally, Physics is more appealing to me. Short term, I’d like to know (with an M. Sc. in Physics) if I can compete with microelectronics engineers for solid state device engineering jobs. Long term, I’d like to do a PhD (for which I’ll need publications to get into a program) in photovoltaics. My professional outlook right after finishing my M. Sc. is that I’ll need to work for a while first before I can proceed to do my PhD. An industry job is preferable since it usually pays more. On the subject of publications, I will have achieved that during my stint in the M. Sc. program.

Conversely, I think that doing the Microelectronics track would let me focus with just the necessary training for solid state device physics and do away with the unnecessary physics topics. I would also have a wider range of career choices, not just in photovoltaics.

What are your thought processes when faced with a dilemma like this? What other factors do you consider?


And here’s my answer:


Simple answer: Go with EE.

Let me explain.

Consider these questions:

“Do I want to go to grad school?”

For you, the answer is clearly “Yes.” But if it’s not 100% clear, stop now and think hard.

“Masters or PhD?”

It sounds like you want to pursue a masters degree now and a PhD eventually. Keep that in mind.

“Do I want to go into industry or academia?”

When you’re deciding whether and where to go to grad school, pondering the industry vs. academia fork in the road will guide your decision and give you a lot of insight into your own ambitions. If you want to go the academic route, I strongly suggest pursuing a PhD as soon as possible—jointly with or immediately after your MSc. But from your question, it sounds like you’re preparing for an industry career in device engineering rather than academic research.

“Where do I want to be in 10 years?”

Suppose in a decade from now you want to be doing innovative engineering work in the photovoltaics or microelectronics industry.

How do I get there?”

Work backwards.

  • How many years of industry experience do I need before I can reach my goal? As many as possible. It can take the better part of a year to get acclimated and truly integrated in a new work environment, be it company or school, and it’s hard to innovate before you know the existing system and the current state of the art.
  • What academic background do I need? At least a couple terms of related engineering coursework beyond the BSc level. Preferably the experience with cutting-edge research that accompanies PhD-level work in any science or engineering discipline.
  • How long will it take to get a PhD? Around four years (after the MSc).
  • How long will it take to get a MSc? Two to four years, in your case.

Simple math gives you 10 – 4 – (2 to 4) = AMAP (as many as possible).

Simple math tells you to choose the 2-year masters program in EE.

“Am I committed to getting a PhD?”

If there’s a chance that you might stop after the masters and forgo a PhD—and that’s quite likely if you enter a 4-year MS-only program—go for a masters in engineering, not physics. A masters degree alone in physics is often considered to be impractical at best and useless at worst. Although physical intuition is extremely valuable, you’ll end up taking a lot of required classes that would be useful for academic research but not-so-useful for engineering in industry. The key realization is that if your ultimate goal is to work in engineering, you should work in engineering environments (e.g.,, academic or industry research labs) as much as possible. Sure, classes are invaluable preparation, but extra classes often yield diminishing returns while extra engineering experience yields increasing returns, at least at these time scales. Given a fixed amount of time in grad school, then, minimize the length of your MSc program in favor of the PhD.

This line of reasoning suggests that if you’re committed to following through with the PhD, it might be logical to pursue a MSc in physics first. But in your case, however committed you may be, that still may not be true. Those two extra years of “bridging subjects”—and tuition payments—are a deal-breaker.

***Caveat: If you can stretch that MSc in physics into a PhD with the same group (i.e., overlap the 4 years of MSc classes with the ~4 extra years for the PhD, for a total of ~6-7 years)—AND you’re committed to working in photovoltaics—go for it and don’t look back.

“Did I choose the right field?”

If you’re going to do research and work in photovoltaics eventually anyway, does it matter? The only difference this makes in a grad student’s life is where you turn in your forms and where you get your free food. And in practice, there’s very little difference between solid-state physics and EE semiconductor device physics. In either case, you can and will take classes in quantum physics, statistical mechanics, and solid-state, and as long as you find a research advisor working in photovoltaics or a related area, you’ll get the experience you need to be successful in the field. Research groups in solid-state devices are often highly interdisciplinary anyway: My group in the MIT EECS department has students and researchers from EE, physics, materials science, chemical engineering, chemistry, and mechanical engineering.

“Which area will best prepare me for a career in photovoltaics: Microelectronics or Power Electronics?”

Microelectronics. Like photovoltaics, micro/nanoelectronics is deeply rooted in semiconductor device physics, and you’ll find that many processing technologies and techniques are shared between the two fields. That said, if you want to work on developing utility-scale photovoltaic systems, taking some power electronics classes would be very useful.

***Here are a couple other things to keep in mind as you decide your future:

1) I don’t believe that you need to work in industry after your MSc before you can start on your PhD.

  • I went straight into a MS/PhD program in EE immediately after graduating from undergrad. Many grad programs in EE and other engineering disciplines have combined MSc/PhD programs—less so in physics—so pursuing both at once would save you a round of applications and up to a year of total time to graduation. But if getting admitted to PhD programs directly is a concern, consider applying to a MSc program that offers the possibility of continuing on for the PhD (e.g., by taking qualifying exams or petitioning). At many schools, it’s easier to stay in than to get in.
  • If you don’t apply to grad school while you’re still in school, it will be difficult to get the required recommendation letters from professors—note that letters from professors are the most important part of your application and carry much more weight than letters from engineers or managers in industry. Besides, you can often do internships if you want industry experience.
  • Many engineers in industry have told me that it’s very difficult to go back to school (for a PhD) after working for a while—you get used to a certain lifestyle (e.g., predictable work schedule, weekends off, no classes, a solid paycheck) that you won’t be able to maintain as a grad student. And once you get married and have a kid or two running around the house, it will become even more difficult to go back to school.

2) I think it’s incredibly valuable for anyone involved in science and engineering—both in industry and in academia—to be exposed to the microelectronics industry and Moore’s Law (the self-fulfilling prophecy driving transistor density in integrated circuits to double every two years). The former touches nearly every aspect of our lives today, and the latter represents a historical upper limit on the time derivative of innovation—pure exponential growth for 4 decades. And although very few (if any) other sectors have growth potential anywhere near that afforded by transistor scaling, I can think of no industry that would not benefit from the relentless driving force of a Moore-esque imperative.

Tagged , , , , , , , , , , , , , , , ,